The Petersson–Knopp Identity for the Homogeneous Dedekind Sums
نویسندگان
چکیده
منابع مشابه
Higher Dimensional Dedekind Sums
In this paper we will study the number-theoretical properties of the expression v1 nkal rcka,, d(p; a I . . . . . an) = ( 1) n/2 ~ cot cot (1) k=l P P and of related finite trigonometric sums. In Eq. (I), p is a positive integer, a~ . . . . . a, are integers prime to p, and n is even (for n odd the sum is clearly equal to zero). There are two reasons for being interested in sums of this type. F...
متن کاملOn the General Dedekind Sums and Two-Term Exponential Sums
We use the analytic methods and the properties of Gauss sums to study the computational problem of one kind hybrid mean value involving the general Dedekind sums and the two-term exponential sums, and give an interesting computational formula for it.
متن کاملDedekind Cotangent Sums
Let a, a1, . . . , ad be positive integers, m1, . . . ,md nonnegative integers, and z1, . . . , zd complex numbers. We study expressions of the form ∑
متن کاملOn the Asymptotic Behavior of Dedekind Sums
Let z be a real quadratic irrational. We compare the asymptotic behavior of Dedekind sums S(pk, qk) belonging to convergents pk/qk of the regular continued fraction expansion of z with that of Dedekind sums S(sj/tj) belonging to convergents sj/tj of the negative regular continued fraction expansion of z. Whereas the three main cases of this behavior are closely related, a more detailed study of...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 1996
ISSN: 0022-314X
DOI: 10.1006/jnth.1996.0045